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FEASIBILITY O F  MINIATURIZEb INSTRUMENTATION O F  THE 
INFLATABLE  SPHERE FOR TEMPERATURE,  PRESSURE 

AND ACCELERATION MEASUREMENT 

James K. Luers  * 
University of Dayton Research  Institute 

SUMMARY 

The  feasibility of instrumenting  the  Robin  sphere  with  miniaturized  thermistors, 

pressure  transducers  and accelerometers has  been  studied  and  it  appears  practical 

to proceed  with  an  experimental  test  program. Skin temperature  is  the  most  important 

of the  three  parameters  and  highest  priority  should  be  allotted  toward  incorporating  it 

into  the Robin system. Skin temperature  measurements could  potentially  be  used  to  cal- 

culate  temperature,  pressure,  density,  and  vertical  winds  from 90 through 30 Km. 

A pressure  measurement  would primarily  be  used  as a diagnostic  tool in monitoring 

the  inflation-collapse  behavior of the  sphere.  The  technical  feasibility of a pressure  

transducer  accurately  monitoring  internal  sphere  pressure  has  not  been  completely 

established.  It  does  however  appear  justified in pursuing on a limited  experimental 

basis.  Its  need,  potentisl  and  cost  however do not warrant  the  emphasis in a develop- 

mental  program  that  should be given  the temperature  measurement. 

The  technical  feasibility  for  acceleration  measurements  is  quite  favorable.  The 

application of the  acceleration  measurement  however may be  limited if the  orientation 

of the  sphere  is  not  sufficiently  stable  to  produce a steady  state  acceleration  trace. If 

the  total  drag  acceleration  can  be  accurately  deduced  from a single  axis  accelerometer 

then  the  passive  sphere  system  could  be  utilized  at  locations  not  possessing  an  FPS-16 

radar. 

.Ir 
1- 
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SECTION 1 

INTRODUCTION 

Over  the  past  ten  years  the  Robin  System has provided a low cost  method of obtain- 

ing upper  atmospheric  measurements of winds,  temperature,  density  and  pressure. 

The  mid  sixties  saw a one meter  corner  reflector  sphere  carried  aloft  by an  Arcas  

rocket  provide  measurements  between 30 and 60 Km  (ref. 1). Questionable  accuracy 

in the  drag  table  and  hardware  reliability  problems  proved a noteworthy  obstacle to a 

general  acceptance of the  inherent  accuracy of the  passive  sphere  system. 

The  general  need  for  the  passive  sphere  system  was  supplanted  with  the  develop- 

ment of the  Datasonde  system.  After a lengthy  period of controversy  concerning  heating 

correction  terms  the  Datasonde  system now provides  accurate  temperature  profiles by 

use  of a bead thermistor to 60 Km. Due to the  magnitude of heating  corrections  that 

must  be  applied to  the  bead  thermistor  at  higher  altitudes  the  potentially  effective  range 

of the  Datasonde  system  is  on  the  order of 65 Km. Above this  altitude  only  the  spheres 

and  grenades  systems  are  capable of providing  accurate  upper  atmospheric  parameters 

on an  operations  basis.  The  grenade  technique,  however,  requires a manyfold increase 

in cost  over  the  sphere  system  and  is  no  longer flown  operationally. 

The  experience  gained in the  early  development of the  Arcas-Robin  program  led 

naturally  to  the  development of a high  altitude  sphere  system  designed to  provide  mete- 

orological  parameters  up to 100 Km (ref .  2 ) .  Originally a Viper  Rocket  motor  was 

used to produce  the  thrust  necessary to achieve  the  desired 125 Km apogee  (ref. 3 ) .  

After  several  years of service  the  Viper  Rocket  was  replaced by a lower  cost  Super 

Loki  motor.  The  Super  Loki  consisted of a Loki  motor  with a non-powered, low drag, 

second  stage  dart.  After  burnout  the low drag  dart   separates  fromthe Loki  and  continues 

upward to an  apogee of near ly  115 Km. Here  the  sphere  ejects  from  the  dart body and 

is  tracked by radar  until  collapse.  This  rocket  system  is  still in operation. 
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The  past  five  years  saw  changes in the sphere as well  as  the  rocket  vehicle.  Like 

the  Arcas  and  Viper  systems  the  Super  Loki  system  reliability  was  such  that  it   pro- 

vided  accurate  meteorological  data down to 30 K m  for  only  about 50% of the  launches. 

Non-inflation  and  premature  collapse of the sphere  were  major  causes of system  fail- 

ure.  Sphere  changes  were  made  to  improve  the  overall  reliability of the  system.  The 

first  change in the  sphere  was  the  removal of the  radar  reflective  corner  reflector. To 

maintain  radar  tracking  capability  the  sphere  was  metalized.  The  metalized  spheres 

provided  accurate  radar  tracking  and in addition  lightened  the  sphere  mass by  20 grams. 

Unfortunately  the  reliability  and  inflation-collapse  problems of the  sphere  did not  dis- 

appear. Next a  pyrotechnic  time  delay  was  introduced into  the  inflation capsule.  It 

was  speculated  that  immediate  inflation of the  sphere  at  ejection  was  causing  it to 

rupture.  The  burden of a  time  delay  capsule  increased  the  sphere  mass by 70 grams 

without  solving  the  problem.  Next  it  was  suggested  that  aerodynamic  heating of the  dart 

body was  causing  fusion of the  mylar  and  preventing  proper  inflation  at  ejection. A 

thermal  insulation  coating  was  sprayed on the  dart body f o r  protection.  The  insulation 

proved  helpful in some  situations but did  not resolve  the  inflation-collapse  problem. 

The  next  speculation  was  that  due to insufficient  heat  the  isopentane  was not  fully  vapor- 

izing  and  the  result  was  early  sphere  collapse.  Consequently  cisbutane-2  was  substi- 

tuted  for  isopentane.  The  results  were  again  negative. In nearly  all  of the  above  sys- 

tem  modifications  temporary  improvement in system  reliability  resulted but subse- 

quent  shipments of production  systems  reverted  back  to  the  previous  problems. 

As a result of the  problems  still  associated  with  the  passive  sphere  system  a 

feasibility  study  has  been  undertaken  to  assess  the  use of miniaturized  sensors  attached 

to the  sphere  as   a   means of monitoring  the  sphere  behavior.  The  specific  purposes of 

the  feasibility  study a r e  threefold: to gain  knowledge  concerning  causes of sphere  fail- 

ure,  to  provide  data  that  can  substantiate  or  improve  measurement  accuracies  as  cal- 

3 



culated  from  the  Data  Reduction  Program  and to improve  the  system  either  through 

the  measurement of parameters  previously  not  measured,  or  through  more  accurate 

measurement of the  parameters  presently  obtained  from  the  radar  coordinates. 

The  study  considers  the  use of miniaturized  temperature  sensors,   pressure  trans- 

ducers  and  accelerometers  with  the  accompanying  telemetry  hardware  needed  to  trans- 

mit  the  data to a ground  receiving  station.  The  inherent  value of each  type of measure- 

ment  and  the  particular  instrumentation  problems  associated  with  obtaining it a r e  dis- 

cussed in Sections 2, 3, and 4. In  addition to the  unique  constraints  and  environmental 

qualifications  associated  with a thermistor,   pressure  transducer  or  accelerometer 

there  are  overall  system  constraints  inherent in the  Viper  Dart  or  Super Loki systems. 

The  system  constraints  are as  follows: 

1. A l l  telemetry  and  sensors  must  withstand 150 g launch  forces. 

2. Volume of sensors,  battery  and  telemetry  hardware  must not 

exceed 100 cubic  centimeters. 

3 .  To  fit  inside  the  dart body a diameter of the  instrument  sensor 

package  must  be  less  than 2.5 centimeters. 

4. Increased  mass  of sphere due to instrumentation  must  be  less 

than 100 grams. 

5. Instrumentation  must  monitor  sphere  behavior  for  the  duration 

of a flight  (approximately 20 minutes). 

Under  these  constraints  and  subject to the  environmental  atmospheric  extremes of 

temperature  and  pressure  three  types of onboard  measurement  sensors  were  evaluated; 

internal  pressure,  skin  temperature,  and  acceleration. 
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SECTION 2 

SKIN TEMPERATURE 

The  measurement of the  skin  temperature of the  sphere would be  desirable  for 

several  reasons.  At  separation of the  sphere  from  the  rocket body the  isopentane 

capsule  is  ruptured  and  inflation  begins.  The  heat  required  to  vaporize  the  isopentane 

comes  from  the  skin  and  the  capsule. If sufficient  radiant  and  aerodynamic  heating  is 

lacking  to  raise  the  temperature of the  gas  above  the  boiling  point of isopentane  then 

not all isopentane  will  vaporize  and  the  pressure  inside  the  sphere  will  be  the  vapor 

pressure  of isopentane  corresponding to the  sphere  temperature.  Since  the  boiling 

point of isopentane  at 10 mb  pressure  is  approximately 210 K, sphere  temperatures 

lower  than  this  could  cause  only  partial  inflation  or  premature  collapse. A monitor of 

skin  temperature  can  be  used  to  determine when  vaporization of the  isopentane  is  com- 

0 

plete, o r  if the  skin  temperature  becomes  excessively  cold  and  vaporization  ceases 

o r  condensation  occurs. 

A second  use of skin  temperature  measurements  concerns  the  effect of skin  temp- 

erature  on the  drag  coefficient  at  Mach  numbers  greater  than 1. Figures 1 and 2 from 

Bailey  and  Hyatt 1971 (ref .  4) show the  influence of skin  (wall)  temperature to be  largest  

a t  low reynolds  numbers. To measure  the  change in density  that  would  result if a skin 

temperature  correction  were  used in the  Robin  program to calculate  density a simula- 

tion procedure  was  initiated. 

The  theoretical  path of a passive  sphere  falling  through  the 1962 Standard Atmos- 

phere was generated.  The  space  time  position  coordinates  were  then  used as  input  to 

the Robin program  and a density  and  temperature  profile  generated. Next the Robin  pro- 

gram  was  modified to include  the  skin  temperature  effect on drag  coefficient.  Three 

skin  temperatures  versus  altitude  profiles  were  designated as the input. The  density 

profiles  produced by the  modified  Robin program  using  the  skin  temperature  profiles 
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was  compared to  that  from  the  original  Robin  program to determine  the  influence of 

skin  temperature. 

Figure 3 shows  the  three  skin  temperature  profiles  used.  (1962  Standard  Atmos- 

phere  profile  is  also shown). The  Australian  profile  was  actually  measured  with  the 

Australian two meter   sphere by an  onboard  thermistor.  The  maximum  and  minimum 

heating  profiles  were  defined as  the two extremes of skin  temperature  profiles  that 

could  conceivably  occur  with  the  Robin  system.  The  results of the  simulation  using 

these  three input profiles  is shown  in Figure 4. This  figure  shows  the  change in  den- 

sity  resulting  from  including  the  effect of skin  temperature  on C The  Australian  pro- 

file  shows  less  than 370 change in density  from 90  to  100 Km  and  less  than 2% below 

90 Km. The  minimum  heating  profile  shows  less  change  than  the  Australian  profile. 

The  maximum  heating  profile  shows a change of 7% a t   the   f i r s t   da ta  point  (97.5  Km) but 

quickly  decreases to 370 to 470 between  95 K m  and 7 5  Km. At  approximately 72 K m  the 

Mach  number  becomes  less  than 1 and  the  skin  temperature  effect  disappears.  Since 

the  maximum  and  minimum  heating  profiles  are  extreme  situations  actual  flight con- 

ditions a r e  expected  to  produce a smaller  skin  temperature  influence. A monitor of skin 

temperatures  onboard  the Robin sphere would result in improved  density  accuracy of 

from 1-4% above  90  kilometers  with  insignificant  improvement  below  this  altitude. 

D' 

A third  benefit  from  skin  temperature  measurements would  be  the  potential  for 

calculating  ambient  atmospheric  temperature  (from  skin  temperature)  after  correcting 

for  the  radiant  and  aerodynamic  heating of the  sphere.  At  altitudes below 60 K m  the 

fall rate  and  orientation of the  sphere  should  be  sufficiently  stable to satisfactorily  per- 

form  these  calculations. Above 60 K m  aerodynamic  heating  may  be  large.  The  accuracy 

to which  both  the  radiant  and  aerodynamic  heating  corrections  can  be  calculated  are  the 

limiting  factors  for  providing a reliable  measure of ambient  temperature.  To  calculate 

the  aerodynamic  heating  an  accurate  profile of sphere  velocity,  drag  measured  density 
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and  sphere  orientation  is  necessary  and  can  be  obtained  through  processing of the 

Radar  tracking  data.  The  radiant  heat  correction  can  be  derived  from  absorptivity  and 

emissivity  properties of the  aluminized mylar skin  and  the  orientation of the  sphere 

relative to  the sun. By  imbedding several   thermistors  at   various  locations  within.the 

skin  the  total  heat  content of the  skin  could  be  estimated  and a mean  skin  temperature 

deduced. Experimental  verification of the  aerodynamic  and  radiant  heat  correction 

terms  could  be  achieved by comparison of the  corrected  skin  temperature to  the  ambient 

temperature  derived  from  independent  sources  such as grenades,  datasondes,  and  drag 

derived  temperature  from  the  sphere. 

The  development of an  instrllmented  passive  sphere  system  that  provides  direct 

temperature  measurements  from  skin  thermistors  as  well  as a  drag-measured  density 

and  temperature  profile would  be of enormous  benefit  to  the  meteorological  community. 

Its  adaptation would  provide  improved  measurements of density,  temperature,  and  winds 

from  above 80 K m  to 30 Km. In  addition  reliable  estimates of vertical  wind  motions 

between 60 and 30 K m  could be derived by attributing  the  difference  between  thermistor 

derived  and  drag  derived  temperatures to vertical  winds.  The  system would also  allev- 

iate two shortcomings of the  present  passive  sphere  system:  drag  table  inaccuracies 

and  determination  of  collapse  altitude.  Temperature  redundancy  provides a means of 

verifying  or  correcting  the  drag  table.  Sphere  collapse  altitude  should  be  identifiable 

through  telemetry  dropouts  due to  antenna  disorientation  when  the  sphere  collapses. 

Such a system  as  described  above would replace  the  need  for  the  present  Datasonde 

system.  It would provide all of the  data  presently  available  from  this  system,  with 

commensurate  accuracy,  and  at  the  same  approximate  cost. 
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2.1 SENSOR REQUIREMENTS 

The  value of a skin temperature  measurement  is  predicated upon  the  ability  to 

measure  temperature  with a high  degree of accuracy.  For  the  applications  discussed 

above  skin  temperature  accuracy of 1 o r  2 degrees  Celsius  should  suffice.  The  range of 

temperatures  anticipated on the  skin of the   sphere   a re   f rom -60 C to +30 C. The  choice 
0 0 

of a temperature  sensing  device  must  satisfy  these  accuracy  and  range  requirements. 

There  are   several   commercial   thermistor  type  sensing  devices  that  meet  these  require- 

ments.  The  Australian  skin  temperature  sensing  experiments  used off the  shelf  type 

thermistors.   They  performed  satisfactorily,   are  very  l ight in  weight - less  than a 

gram - and  provided good accuracy. 

2.2 CIRCUITRY 

The  temperature  thermistors  must  be  incorporated into a circuit  that  fulfills  the 

five  system  constraints  delineated in Section 1. If m o r e  than two thermistors   are   used 

to  sense  temperature  some  type of signal  multiplexing  is  needed.  At  present  it  appears 

that  the  mass of such a system would  exceed  the 100 gram  l imit .   For  this  reason only 

two thermistors  have  been  incorporated into the  circuit. 

Figure 5 shows a wiring  schematic  for  the  thermistor  telemetry  circuit.  The  cir- 

cuit  is  nearly  identical to the  Australian  circuit  (ref. 5) with  only  minor  modification 

primarily  designed to transmit at a higher  frequency. 

A 1 5  volt D. C. battery would  supply  power  to  the  circuit. A voltage  regulator  will 

maintain a constant 4. 8 voltage  to  the  pulse  generation  and  shaping  circuits. A silicon 

conti-olled rectifier  and  charging  capacitor  are  used to convert DC to a pulsed  output. 

The  T1  thermistor  signal  varies  the  pulse  rate.  The  T2  thermistor  signal  varies  the 

duration of the  pulses.  The  T1  and T2 signals  are  broadcast  as a pulse  train  from a 

simple  RF  oscillator.  Failure of either  thermistor  should  not  influence  the  perfor- 

mance of the  other. A transistor  is  used to  produce  the  desired 2200M Hertz  frequency 

12 
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and  transmit  through a 1-1/4 wavelength  antenna  to a ground  receiver. 

The  circuit  will  require  approximately  the  following  number of major  components. 

Their  mass and  estimated  cost  is  also included. 

Units 

1 

3 

10 

3 

2 

7 

1 

3 

6 

4 

1 

Component 

Battery 

Transis tors  
(Oscillators) 

Precision  Resistors 

Integrated  Circuit 

Thermistors  

Capacitors 

Switch 

Inductors 

Fiberglas  Boards 

Structural  Supports 

Antenna 

Miscellaneous 

(Wire,  Insulation,  Cement  etc) 

The  total   mass of the  system would  be on the  order of 70-80 grams and  certainly 

l e s s  than  the  design  limitation of 100 grams.  The  approximate  cost of materials  alone 

would  be $100. The  pressure  sensing  and  acc'eleration  sensings  circuits  will  vary 

little in mass from the thermistor  circuit  but  will  increase in cost.  This  is  further 

discussed  in a later  section. 

2.3 PACKAGING 

The  circuit  diagram shown * i n  Figure 5 would  be wired on six  circular  etched  copper 

fiberglass  base  boards.  The  diameter of the  boards would  be  approximately2.54 cm s o  as t o  

fit  inside  the  dart body. The  boards would be connected by cement to rigid  fiberglass 
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pins as shown  in Figure 6. The  entire  structure  can  be  potted  with  plastic  foam to pre- 

vent  damage  and  insulate  the  instrumentation  from  shock  and  temperature  variations 

during  launch.  The two thermistors would  be  placed at  different  locations on the  sphere. 

Our  initial thought is that  the two best  locations  may  be  at  the  leading  point  during  de- 

scent,  and  at a position 90  around  the  sphere  from  the  leading point. The  location of 

:he center of gravity  (Cg),  determines  the  leading  point of the  sphere  and  should  approx- 

0 

imately  coincide  with  the  location of the  instrument  package  (See  Figure 7). The 

antenna  must  be  attached to the  skin  to  remain in an  orientation  favorable  to  the  ground 

receiving  station.  The  Australian  system  replaced two metalized  gores  with  trans- 

parent  gores,  cemented  the  antenna  to  one of these  gores  and  placed  the  gores 180 

apart  around  the  sphere. With  such an  orientation,  telemetry  linkup  was  satisfactory. 

Occasional  signal  dropouts when  the  antenna  was  shielded  from  view  enabled  the  spin 

rate  of the  sphere  to  be  deduced  without  significant  errors in reconstruction of the  sig- 

nal.  The  sphere  could  be  designed  similar  to  the  Australian  system by imbedding  one 

of two transparent  Mylar  gores  with  an  antenna.  The  antenna  length  will  be  considerably 

smaller  for  the  sphere  since  transmission  will  be a t  a higher  frequency. 

0 

The  Viper  Dart  system  contains  an  inflation  capsule  that is f ree  to move  about in 

the  sphere  during  descent.  The  orientation of the sphere with respect to  the  leading 

point  cannot  be  determined  prior  to  launch.  This  knowledge  is  necessary so that  the 

thermistor  can  be  located  at  the  proper  positions  on  the  sphere.  The  system  can  be im- 

proved  by  affixing  the  capsule  to  the  skin to prevent  internal  motion of the  capsule. 

The  instrumentation  package  can  be  attached  to  one end of the  capsule  and  the Cg 

location  predetermined. A technique  will  be  needed to activate  the  instrumentation 

after  launch  or  at  ejection.  This  can  be  accomplished by a mechanically  activated  or 

pressure  sensit ive switch. 

15 



6 Fiberglass  base  boards 

OSuppor~ Pins 

Front View Side View 

Figure 6. Instrumentation  Circuit  Boards 

T 1  thermistor 
Center of 

P res su re  

T2 thermistor 

Leading  point 

/- 
Antenna \ Direction of motion 

relative to a i r  

Figure 7. Instrumentation  and Antenna  Location 

16 



To  instrument  the  Super  Loki  system a different  packaging  procedure would be 

used.  The  Super  Loki  system,  unlike  the  Viper  dart  system,  contains a pyrotechnic 

delay  mechanism  designed to retard  isopentane  vaporization of the  sphere  for  several 

seconds  after  ejection.  Since  the  delay  mechanism  does  not  appear  necessary  it  could 

be removed  from  the  capsule  and  replaced  with  the  electronics  and  sensor  package. 

This  exchange  would  keep  the  mas s of the  system  at  approximately  its  present  value 

of 165 grams. 

SECTION 3 

PRESSURE 

The  measurement of internal  sphere  pressure  can be used to a s ses s  the structural  

integrity of the  sphere.  The  inflation  capsule  inside  the  sphere  contains  sufficient  iso- 

pentane to inflate  the  sphere to 10 mb  pressure.  Under  this  pressure  sphere  collapse 

should  occur  at  approximately 30 Km. A monitor of internal  pressure would determine 

if the  isopentane  vaporizes  completely  and  under  what  time  frame  this  occurs. Should 

pinhole  leaks  occur in  the sphere a slow rate of internal  decrease in pressure  will  be 

observed. If pressure buildup a t  Mach 1 tends to distort the  shape of the sphere  this 

event  can  be  observed  through a corresponding  increase in internal  pressure.  Finally 

an  internal  pressure  sensor  could  accurately pinpoint  the  collapse  altitude of the 

sphere -- a long  disputed  problem.  When  internal  pressure  increases  above  the 10 mb 

level  then  sphere  collapse  is  certain,  and  internal  pressure  equals  external  pressure. 

After  collapse  the  internal  pressure  sens'or  measures  atmospheric  pressure  which ex- 

tends  downward  the  altitude  range for  meteorological  measurement. 

An alternate  means of monitoring  internal  sphere  pressure would  be  through  the 

use  of a differential  pressure  transducer.  Physically  the  difference  between  an  abso- 

lute.and  differential  pressure  transducer  is  that  the  absolute  transducer  has a sealed 

tube at  reference  pressure  while  the  differential  transducer  has  the  tube  vented to the 
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exterior. By mounting a differential  transducer  on  the  skin  with  the  reference  tube 

vented  to  the  exterior of the  balloon  the  difference in pressure  between  the  balloon 

interior  and  the  ambient  pressure  can  be  monitored.  Since  at  altitudes  above 60 Km 

the  ambient  pressure  is   very small compared to  the  internal  pressure,  the  differential 

can  be  used as  an  excellent  approximation  to  the  internal  pressure. A t  lower  altitudes 

the  ambient  pressure, as measured by  the  integration of the  drag  determined  density, 

can  be  added to the  pressure  differential to determine  internal  sphere  pressure.  There 

a r e  both advantages  and  disadvantages  to  the  utilization of a differential   pressure  trans- 

ducer.  The  disadvantages  are: a) The  pressure  distribution  around  the  sphere  is  not 

the  ambient  pressure -- particularly  at  high  Mach  number.  Thus  the  differential  pres- 

sure   measurement  would  reflect  the  pressure  buildup  relative to  the  point on the  sphere 

a t  which  the  reference  pressure  tube  protrudes.  This  does  not  seem to be a serious 

problem  however  for two reasons:  the  density  is so small a t  high  altitudes when  the 

velocity  is  large  that  the  dynamic  pressure  at  any  point on the  sphere  is  negligible as 

compared  to  the  internal  pressure  and;  secondly, as will  be shown later,  the  sphere  will 

orient  itself so that  the  line  connecting  the  center of mass with  the  center of the  sphere 

will  align  itself  with  the  velocity  vector.  Thus  the  transducer  orientation  will  be known 

and  pressure build-up  can  be  compensated  for. A second  disadvantage  (b) of the  dif- 

ferential  transducer  is  its  inability to measure  ambient  atmospheric  pressure  after 

collapse.  The  differential  pressure  goes to zero when  the sphere  collapses  and  remains 

at  zero  thereafter. 

A differential  pressure  transducer  has  some  important  advantages. A differential 

transducer  will  sensitively  monitor, by a drop in differential  pressure,  any  forces ex- 

erted on the  sphere  when  it  passes  through  Mach 1. The  most  important  advantage how- 

ever,  for  the  differential  transducer  is  its  ease in calibrating.  Since  pressure  trans- 

ducers  must  be  calibrated  for  zero  shift  and  temperature  dependence  this  can  be  accom- 
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plished  for  differential  transducers  at  near a m  spheric  background  pressures.  For 

absolute  pressure  transducers  evacuation of a pressure  chamber  to 100 Km  altitude  and 

stringent  temperature  control would be  required. 

The  range of calibration  required  for a transducer  attached to  the  skin of a sphere 

cannot  be  determined a t   t h i s  time. The  temperature of the skin to  which  the  transducer 

is  attached  is  an unknown variable.  Depending upon altitude,  time of day, and  albedo, 

the  range of skin  temperatures  could  conceivably  vary as much as 150 C. The  pressure 

transducer  must  be  calibrated  to  compensate  for  the  temperature  variability.  Until 

more   i s  known concerning  the  temperatures  experienced by  the  transducer  the  calibra- 

tion  range  will  have to be  assumed.  The  launching of a few experimental  instrument 

systems  should  determine a nominal  range of temperatures. A preflight  calibration 

can  be  made  to  compensate  for  these  anticipated  temperatures.  For  an  operational 

type  system  the  calibration of the  transducer would occur  during  the  manufacturing 

or  assembly  process.  At  that  time  each  transducer would  be calibrated  versus  temper- 

ature  and  the  calibration  chart would  accompany  the  instrument  package. 

3 . 1  SENSOR REQUIREMENTS 

0 

A miniaturized  pressure  transducer  tomonitor  internal  sphere  pressure  or  pressure 

differential  subject to the  constraints of launching,  the  extreme  atmospheric  temperature 

range,  and  the low pressure  for  which measurements   a re  needed  provides a state of 

the  art  challenge  to  miniaturization technology. The  important  performance  properties 

that a pressure  transducer  must  possess  are:  

1) Measurement  range 0-15 mb  (absolute  or  differential) 

2) Accuracy+ 1 m b  

3) Maximum  pressure  to  withstand 1000 mb  (atmospheric) 

4) Maximum  acceleration to  withstand 150 g ( a t  launch) 

5) Operating  temperature  range - 6OoC to +30°C 
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6 )  Overall  dimensions of transducer  less  than 1.27 cm on each side 

No pressure  transducer  has  been found that  completely  satisfies  these six require- 

ments.  One of the  more  promising  miniaturized  absolute  transducers  is CQH-125-5 

made by  Kulite  Semiconductor  Products  Incorporated.  It  is small, weighs  less  than 1 

gram  and if packaged  cross  axis  to  the  launch  load  will  withstand 150  g  launch  acceler- 

ation.  It  has a rated  pressure of 5 P. S.I. (= 330 mb)  and  will  withstand a maximum 

pressure  of 20 P.S.I. which  exceeds  atmospheric  pressure. A zero  balance  shift of 

- + 17 mb  and  non-linearity  response of 2 mb  can  be  compensated  for by pre-flight  cali- 

bration.  Repeatability of the  instrument  is  well  within 1 mb  and  thus  quite  satisfactory. 

The  operating  temperature  range of the  transducer  is -20 C to -1120 C with  tempera- 

ture  compensation  between 25 C and 80 C. The  manufacturer  states  that  the  operating 

range  should  be  extendable  to -6OOC but temperaturecalibration would  be  required,  The 

change of no-load  output  with temperature  is  2 10 mb  per  44 C. Since  the  compensated 

temperature  range is over 80 warmer  than  the  most  severe  environmental  temperature 

a +  20 mb  correction  could  be  needed.  To  calibrate  for  the  zero  balance,  nonlinearity, 

and  no-load  temperature  correction  an  exhaustive  series of pre-flight  tests would  be re- 

quired  for  each  transducer. A millivolt  output  versus  pressure  curve would  have  to  be 

generated  for  various  temperatures  at   the  very low  1-10 mb  measurement  range of 

interest to  the  experiment. Such a test  schedule would require  an  extremely  high  vac- 

uum  chamber  with  excellent  temperature  control  capabilities.  It  would  be  costly  and 

not  practical  except on a few experimental  firings.  In  addition,  for  each  launch a 

thermistor would  be  needed  to  monitor  the  temperature of the  pressure  transducer so 

that  the  correct  calibration  curve  could  be  utilized. 

0 0 

0 0 

0 

0 

A differential  pressure  transducer  analogous to  CQH-125-5 can  be  derated  to 

measure  the  differential in pressure  on a 0-15 mb  pressure  range.  The  temperature 

sensitivity to a 0-15 mb full scale  range would remain  within  the 1 mb  tolerance.  Zero 
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balance  shifts  and  non-linearity  deviations would also  be  within 1 mb. Thus  the  differ- 

ential  transducer  may  not  require  the  stringent  calibration  needed  for  an  absolute  trans- 

ducer.  Even if calibration of the  differential  transducer  is  needed  it  becomes a much 

simplified  problem.  The  calibration  need  not  be  made  under  extreme  vacuum  conditions. 

The  reference  probe of a differential  transducer  can  be  vented to the  atmosphere  which 

would  then  only require 1 5  m b  evacuation of a pr essure  chamber  to  calibrate  the 

transducer. 

3.2 CIRCUITRY 

The  circuit  diagram  for a pressure  transducer would be s imilar  to the  thermistor 

circuits  with  the  changes shown  in Figure 8. The  circuit  used by a thermistor  to  mod- 

ulate  the  pulse  spacing would  be  changed  to a modulation of pulse  spacing by the am- 

plified  output of a pressure  transducer.   The  other  thermistor would  be retained  to 

monitor  the  temperature of the  pressure  transducer.  These  modifications would in- 

crease  the mass of the  instrumentation  package  by  less  than 5 grams.  The  cost would 

be  increased by approximately $400 (1974  prices) -- the  cost of the  pressure  transducer 

and  an  amplifier. 

3 . 3  PACKAGING 

The  differential  transducer  can  be  mounted on one of the  six  fiberglass  boards 

shown in Figure 6. The  mounting  will  be  aligned in such a way  that  when  the sphere  is 

packaged  within  the  dart  the  sensitive  axis of the  transducer  will  be  perpendicular to  the 

g-force  direction of launch.  The  reference  tube  from  the  transducer  will  be  vented 

through  the  skin of the  sphere  to  the  atmosphere. 

Other  than  these  modificatrons,  packaging of the pressure  measurement  hardware 

will  be  the  same as that  for  temperature  sensing. 
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SECTION 4 

ACCELERATION 

The  direct   measurement of acceleration by  on-board accelerometers  has  been  done 

in the  past  with  large  inflatable  spheres by Morrissey  and  Faucher,  and in small solid 

spheres by Champion  and  Faire.  Each  sphere  system  contained  tri-axial  accelerome- 

t e r s  positioned a s  near  as possible to  the  center of m a s s  of the  sphere.  In  order ,to de- 

rive  density  from  the  three  components of acceleration  the  direction of the  velocity 

vector of the  sphere  relative  to  the wind was  required.  Because of the  heavy  mass of 

both of these  systems a vertical  direction  could  be  assumed as  the  direction of the  rela- 

tive  velocity  vector.  This  assumption  is  not  valid  when  discussing  the  light  weight 

sphere.  The  inflatable  sphere  is a very good wind sensor and  the  direction of the  rela- 

tive  velocity  vector  is  often  more  attuned to  the wind direction  than to  the  vertical.  In 

addition,  for  the  inflatable  sphere  the  accelerometers  cannot  be  mounted  at  the  center 

of mass because of the  weight  and  packaging  problems  associated  with a strut.  Thus  to 

directly  measure  acceleration,  the  accelerometers would  have  to be  attached  to  the  skin, 

and in addition  some  type of tracking  capability would be  required in order  to  calculate 

the  direction of the  relative  velocity  vector of the  sphere.  These  requirements do  not 

present  the  severe  constraints one might  anticipate  and in fact  may  reduce  the  require- 

ment  from a tri-axial to a single  axis  accelerometer.  Consider a sphere  with a single 

axis  accelerometer  affixed to the  skin as shown  in Figure 9. The  axis of the  acceler- 

ometer  is  aligned  along  the  line  connecting  the  center of mass of the  sphere to its  cen- 

t e r  of pressure   (center  of sphere).  Since  the  accelerometer  is  falling  with  the  system 

it  will  not  observe  the  gravitational  force.  It  will  measure  only  drag  and buoyancy 

forces,  the  latter  of  which  is  negligible  at  altitudes  above 30 Km. The  drag  force  acts 

about  the  center of pressure  of the  sphere  and in a direction  opposite to  that of the  vel- 

ocity  vector  relative  to  the wind.  Since  the  center of mass is  not  at  the  center of pres- 
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sure  the  force  exerted  at  the center  of pressure  will  rotate  the  sphere  until  the.center of 

mass aligns  itself  along  the  drag  force  line.  At  this  point  the  axis of the  accelerometer 

will  be  aligned  with  the  relative  velocity.  The  deceleration  observed by  the  acceler - 
ometer  is  the  total  drag  deceleration of the  sphere.  Only  its  direction  must  be known 

to  enable  density  calculations.  The  direction of the  drag  force  vector  could  presumably 

be derived  with  sufficient  accuracy  with GMD-4 o r  DOVAP type  tracking  equipment. 

Presently high  precision  FPS-16  radars  are  needed to derive  density  from  the  passive 

sphere.  It  therefore  appears  possible  to  obtain  density  at  least  under  steady  state con- 

ditions, by means of a single  axis  accelerometer.  However  dynamic  motions of the 

sphere  must  also  be  analyzed.  In  an  actual  launch  situation  the  sphere,  at  ejection,  is 

spinning o r  wobbling  about  its  center of mass  due to the  initial  spin  imparted  from  the 

rocket. If the sphere  is  not  rotating  about  the  axis  connecting  the  center of pressure 

to  the center of mass  then  it  is  wobbling  and  this  wobbling  can  only  be  damped by the 

drag  force.  The  mounting of a single  axis  accelerometer  near the  skin would monitor 

a cyclic  acceleration  trace  due  to  the  drag  force.  From  the  observed  frequencies 

one  could  deduce  the  orientation  and  spin  behavior of the  sphere  and  the  restoring  time 

needed  for  the  sphere to  align  itself in the  equilibrium  position. 

An additional  use  for  an  acceleration  trace  would  be  for  comparison  with  radar de- 

rived  acceleration  coordinates.  Agreement  between  accelerometer  and  radar  derived 

accelerations in small scale  detail would validate  the  density  and  temperature  oscilla- 

tions  observed in the  reduced  Robin  meteorological  data. If agreement  were  not found 

improved  data  reduction  procedures would  need  to  be  derived. 

4.1 SENSOR REQUIREMENTS 

For  a single  axis  accelerometer to provide  the  data  needed to justify  its  incorpor- 

ation  into  the  passive  sphere  system  the following requirements on the  part of the 

accelerometer   must  be  met. 
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1) Measurement  accuracy of 0.2g. 4) Time  constant less than 1 second 

2) Measurement  range of 0-5g. 5) Operating  temperature  range of 

3) Dimensions less than 1.27 c m  on -6OOC to +3OoC 

each  side 6) Maximum  acceleration  to  withstand 

150g ( a t  launch) 

Miniaturized  accelerometers  are  available  that  successfully  meet all of these  require- 

ments. 

Several  accelerometers  have  been found  with  dimensions  less  than . 3  inches  and 

mass less  than 1 / 2  gram.  These  accelerometers  generally only  have  an  operating 

temperature  range to -40 C. This  can  be  extended  to  operate  in a -60 C environment 

by embedding  the accelerometers in an  insulating  material.  The  zero  output  accuracy 

of the  accelerometers  is =O. 3g. In  flight  calibration  for  zero  atput  is  easily  achieved 

due  to  the low density  atmosphere into  which  the  sphere  is  initially  ejected.  Above 100 

K m  the  sphere  will  experience no significant  deceleration  which  will  allow a zero output 

calibration to  be  made. Thermal  sensitivity of the  accelerometers  is   less than .2 per  

100 C when  operating  outside  the  compensated  temperature  range.  This  can  be con- 

trolled by calibration  or by choosing a compensated  temperature  range  within  the  an- 

ticipated  temperature  variability of the  environment.  To  withstand  the 150g launch 

acceleration  the  accelerometer  can  be  packaged  with  its  sensitive  axis  perpendicular 

to  the  direction of the  launch  force  acceleration. If the  sensitive  axis of the  sphere  is 

packaged in this  direction  the  spin of the  dart   must  also be  considered.  The  dart  spin 

will  produce  an  acceleration  that  will  be  measured  by  the  accelerometer  and  will  depend 

upon the  distance of the  accelerometer  fromfhe  spin  axis of the  dart.  Assuming a max- 

imum  rotational  velocity of the  dart of 40 revolutions  per  second  and  an  accelerometer 

capable of withstanding a ZOg acceleration  the  allowable  distance of the  accelerometer 

from  the  axis of rotational  is  determined  from  the  equation: 

0 0 

0 

0 
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where: 

r is  the  distance of the  accelerometer  from  the  axis of rotation 

a is  the  acceleration  measured by the  accelerometer 

w is  the  frequency of rotation of the  dart 

Solving for r gives a distance of 0. 3 c m  as the  maximum  distance of the  accelerometer 

from  the  spin  axis of the  dart. If a representative  value  for  the  rotational  velocity of 

the  dart, s a y  25 revolutions  per  second  is  used  instead of the  maximum  value,  the 

allowable  distance  from  the  spin  axis  increases to 0.8 cm.  The  accelerometer  can  be 

positioned  within  this  tolerance. 

4.2 CIRCUITRY 

The  circuit  diagram  needed to obtain a single  axis  accelerometer  and a temperature 

measurement would  be  identical  to  that  described  for a pressure  and  temperature 

measurement.  The only difference would  be  the  replacement of the  pressure  trans- 

ducer in the  pressure  circuit  with an  accelerometer.   The  mass of the system would 

be  virtually  unchanged.  The  cost of an  accelerometer  is  $225 as  compared to $365 

for a pressure  transducer (1974 prices). 

4 . 3  PACKAGING 

Proper  orientation of the  axis of the  accelerometer  is  important both during  launch 

and  during  its  sensing  lifetime.  The  sensitive  axis of the  accelerometer  must  coincide 

with a line  connecting  the  center of mass of the  sphere  system  with  its  center of pres- 

sure   ( see   F igure  10). This  can  be  achieved by placing  the  accelerometer in the  proper 

location in the  capsule  and  rigidly  attaching  the  capsule to the  sphere  skin.  The  canis- 

ter   must  be  attached  or  supported so that  no  rolling  motion of the  canister  can  occur. 

The  axis of the  accelerometer  will  be  perpendicular  or  nearly  perpendicular to the long- 
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itudinal  axis  of  the  capsule.  In  packaging  the  capsule  inside  the  dart  the  sensitive  axis 

of the  accelerometer  will  be in a horizontal  position  and  will  withstand  the  launch  forces. 

SECTION 5 

SUMMARY  AND RECOMMENDATIONS 

The  feasibility of instrumenting  the  Robin  sphere  with  miniaturized  thermistors, 

pressure  transducers  and  accelerometers has been  studied  and  it  appears  practical  to 

proceed  with  an  experimental  test  program.  The  practicality of skin temperature 

measurements  has  already  been  established  with  the  Australian  2-meter  sphere  system 

and  presents  no  particular  difficulties in adapting to the  Robin  system.  Since  skin  temp- 

erature  is  perhaps  the  most  important of the  three  parameters  higher  priority should  be 

allotted  toward  incorporating  it  into  the  Robin  system. Skin temperature  measure- 

ments  could  potentially be used to calculate  temperature,  pressure,  density,  and  ver- 

tical  winds  from 90 through 30 Km. 

A pressure  measurement  would primarily be  used as a diagnostic  tool  in  monitoring 

the  inflation-collapse  behavior of the  sphere.  It  has  little  chance  for  incorporation into 

an  operational  system.  The  technical  feasibility of a miniaturized  pressure  transducer 

accurately  monitoring  internal  sphere  pressure  has not been  completely  established. 

It  does  however  appear  justified in pursuing  at  least on a limited  experimental  basis. 

Its  need,  potential  and  cost  however do not warrant  the  emphasis in a developmental  pro- 

gram  that  should  be  given  the  temperature  measurement. 

The  technical  feasibility  for  obtaining  an  acceleration  measurement  appears  quite 

favorable.  The  application of the  acceleration  measurement  however m a y  be  limited if 

the  orientation of the  sphere  is  not  sufficiently  stable  to  produce a steady  state  acceler- 

ation  trace. If the  total  drag  acceleration  can  be  accurately  deduced  from  the  accelera- 

tion  profile  generated by a single  axis  accelerometer then an  important  breakthrough 

may follow  which  would permit  the  passive  sphere  system to  be flown at  locations  not 



possessing  an  FPS-16  radar.  Thus  the  potential  benefits  from  an  accelerometer 

equipped sphere  warrants  an  experimental  test  and  development  program. 

An initial  flight  test of six instrumented  systems is recommended.  Each  system 

should  be  equipped  with two sensors   to   t ransmit  two channels of information.  The  six 

systems should  be  instrumented  or flown in the  following  order: 

1) two thermistors on skin 

2 )  two thermistors on skin  (different  location  from  1) 

3) pressure  transducer  and  thermistor  to  measure  temperature 

of transducer 

4) pressure  transducer  and  thermistor to measure  temperature 

of transducer 

5) thermistor on skin  and  accelerometer 

6) thermistor on skin  (different  location)  and  accelerometer 

The  successful  flight  test of these  six  systems  should  provide  ample  data to a s ses s  

the  potential of improved  falling  sphere  systems  that  incorporate  direct  measurements 

of one o r   more  of the  parameters,   temperature,   pressure  and  acceleration. 
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